124 research outputs found

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Automatic construction of rules fuzzy for modelling and prediction of the central nervous system

    Get PDF
    The main goal of this work is to study the performance of CARFIR (Automatic Construction of Rules in Fuzzy Inductive Reasoning) methodology for the modelling and prediction of the human central nervous system (CNS). The CNS controls the hemodynamical system by generating the regulating signals for the blood vessels and the heart. The main idea behind CARFIR is to expand the capacity of the FIR methodology allowing it to work with classical fuzzy rules. CARFIR is able to automatically construct fuzzy rules starting from a set of pattern rules obtained by FIR. The new methodology preserves as much as possible the knowledge of the pattern rules in a compact fuzzy rule base. The prediction results obtained by the fuzzy prediction process of CARFIR methodology are compared with those of other inductive methodologies, i.e. FIR, NARMAX and neural networksPostprint (published version

    Modeling the thermal behavior of biosphere 2 in a non-controlled environment using bond graphs

    Get PDF
    Biosphere 2 is a closed ecological system of high complexity built to deepen the understanding of ecological systems, to study the dynamics of closed ecologies, and to learn to control their behavior. The use of modeling and simulation is crucial in the achievement of these goals. Understanding a physical system is almost synonymous with possessing a model of its comportment. The main goal of this study is the development of a dynamic bond graph model that represents the thermal behavior of the complex ecological system under study, Biosphere 2. In this work, a first model that captures the behavior of the ecological system in a non-controlled environment is presented.Postprint (published version

    A fuzzy rule model for high level musical features on automated composition systems

    Get PDF
    Algorithmic composition systems are now well-understood. However, when they are used for specific tasks like creating material for a part of a piece, it is common to prefer, from all of its possible outputs, those exhibiting specific properties. Even though the number of valid outputs is huge, many times the selection is performed manually, either using expertise in the algorithmic model, by means of sampling techniques, or some times even by chance. Automations of this process have been done traditionally by using machine learning techniques. However, whether or not these techniques are really capable of capturing the human rationality, through which the selection is done, to a great degree remains as an open question. The present work discusses a possible approach, that combines expert’s opinion and a fuzzy methodology for rule extraction, to model high level features. An early implementation able to explore the universe of outputs of a particular algorithm by means of the extracted rules is discussed. The rules search for objects similar to those having a desired and pre-identified feature. In this sense, the model can be seen as a finder of objects with specific properties.Peer ReviewedPostprint (author's final draft

    A model for continuous monitoring of patients with major depression in short and long term periods

    Get PDF
    The final publication is available at IOS Press through http://dx.doi.org/10.3233/THC-161289BACKGROUND AND OBJECTIVE: Major depressive disorder causes more human suffering than any other disease affecting humankind. It has a high prevalence and it is predicted that it will be among the three leading causes of disease burden by 2030. The prevalence of depression, all of its social and personal costs, and its recurrent characteristics, put heavy constraints on the ability of the public healthcare system to provide sufficient support for patients with depression. In this research, a model for continuous monitoring and tracking of depression in both short-term and long-term periods is presented. This model is based on a new qualitative reasoning approach. METHOD: This paper describes the patient assessment unit of a major depression monitoring system that has three modules: a patient progress module, based on a qualitative reasoning model; an analysis module, based on expert knowledge and a rules-based system; and the communication module. These modules base their reasoning mainly on data of the patient's mood and life events that are obtained from the patient's responses to specific questionnaires (PHQ-9, M.I.N.I. and Brugha). The patient assessment unit provides synthetic and useful information for both patients and physicians, keeps them informed of the progress of patients, and alerts them in the case of necessity. RESULTS: A set of hypothetical patients has been defined based on clinically possible cases in order to perform a complete scenario evaluation. The results that have been verified by psychiatrists suggest the utility of the platform. CONCLUSION: The proposed major depression monitoring system takes advantage of current technologies and facilitates more frequent follow-up of the progress of patients during their home stay after being diagnosed with depression by a psychiatrist.Peer ReviewedPostprint (author's final draft

    A proposal for climate change resilience management through fuzzy controllers

    Get PDF
    We aim towards the implementation of a set of fuzzy controllers capable to perform automated estimation of the period of time necessary to recover a resilience level through the non-linear influence of a set of interrelated climate change resilience indicators constrained by social-based variables. This fuzzy controller set, working together with a fuzzy inference system type Mamdani, will be capable to estimate the proper adjustments to be done onto system’s elements in order to achieve a certain resilience level, while a general estimation of required costs is appraised. The final tool can then be used to provide guidelines for strategic vulnerability planning and monitoring through a clear understanding between investments and results, while an open evaluation and scrutiny of applied policies is made. In this paper the main strategy to achieve the mentioned objectives is presented and discussed.Peer ReviewedPostprint (author's final draft

    PEM fuel cell fault diagnosis via a hybrid methodology based on fuzzy and pattern recognition techniques

    Get PDF
    © IFAC 2014. This work is posted here by permission of IFAC for your personal use. Not for distribution. The original version was published in ifac-papersonline.netIn this work, a fault diagnosis methodology termed VisualBlock-Fuzzy Inductive Reasoning, i.e. VisualBlock-FIR, based on fuzzy and pattern recognition approaches is presented and applied to PEM fuel cell power systems. The innovation of this methodology is based on the hybridization of an artificial intelligence methodology that combines fuzzy approaches with well known pattern recognition techniques. To illustrate the potentiality of VisualBlock-FIR, a non-linear fuel cell simulator that has been proposed in the literature is employed. This simulator includes a set of five fault scenarios with some of the most frequent faults in fuel cell systems. The fault detection and identification results obtained for these scenarios are presented in this paper. It is remarkable that the proposed methodology compares favorably to the model-based methodology based on computing residuals while detecting and identifying all the proposed faults much more rapidly. Moreover, the robustness of the hybrid fault diagnosis methodology is also studied, showing good behavior even with a level of noise of 20 dB.Peer ReviewedPostprint (published version

    Integral seismic risk assessment through fuzzy models

    Get PDF
    The usage of indicators as constituent parts of composite indices is an extended practice in many fields of knowledge. Even if rigorous statistical analyses are implemented, many of the methodologies follow simple arithmetic assumptions to aggregate indicators to build an index. One of the consequences of such assumptions can be the concealment of the influence of some of the composite index’s components. We developed a fuzzy method that aggregates indicators using non-linear methods and, in this paper, compare it to a well-known example in the field of risk assessment, called Moncho’s equation, which combines physical and social components and uses a linear aggregation method to estimate a level of seismic risk. By comparing the spatial pattern of the risk level obtained from these two methodologies, we were able to evaluate to what extent a fuzzy approach allows a more realistic representation of how social vulnerability levels might shape the seismic risk panorama in an urban environment. We found that, in some cases, this approach can lead to risk level values that are up to 80% greater than those obtained using a linear aggregation method for the same areas.Peer ReviewedPostprint (published version

    A methodological approach for algorithmic composition systems' parameter spaces aesthetic exploration

    Get PDF
    Algorithmic composition is the process of creating musical material by means of formal methods. As a consequence of its design, algorithmic composition systems are (explicitly or implicitly) described in terms of parameters. Thus, parameter space exploration plays a key role in learning the system's capabilities. However, in the computer music field, this task has received little attention. This is due in part, because the produced changes on the human perception of the outputs, as a response to changes on the parameters, could be highly nonlinear, therefore models with strongly predictable outputs are needed. The present work describes a methodology for the human perceptual (or aesthetic) exploration of generative systems' parameter spaces. As the systems' outputs are intended to produce an aesthetic experience on humans, audition plays a central role in the process. The methodology starts from a set of parameter combinations which are perceptually evaluated by the user. The sampling process of such combinations depends on the system under study and possible on heuristic considerations. The evaluated set is processed by a compaction algorithm able to generate linguistic rules describing the distinct perceptions (classes) of the user evaluation. The semantic level of the extracted rules allows for interpretability, while showing great potential in describing high and low-level musical entities. As the resulting rules represent discrete points in the parameter space, further possible extensions for interpolation between points are also discussed. Finally, some practical implementations and paths for further research are presented.Peer ReviewedPostprint (author's final draft

    A soft computing decision support framework to improve the e-learning experience

    Get PDF
    In this paper an e-learning decision support framework based on a set of soft computing techniques is presented. The framework is mainly based on the FIR methodology and two of its key extensions: a set of Causal Relevance approaches (CR-FIR), that allow to reduce uncertainty during the forecast stage; and a Rule Extraction algorithm (LR-FIR), that extracts comprehensible, actionable and consistent sets of rules describing the student learning behavior. The data set analyzed was gathered from the data generated from user’s interaction with an e-learning environment. The introductory course data set was analyzed with the proposed framework with the goal to help virtual teachers to understand the underlying relations between the actions of the learners, and make more interpretable the student learning behavior. The results obtained improve system understanding and provide valuable knowledge to teachers about the course performance.Postprint (author’s final draft
    corecore